
A3755 III M29

La finition des pièces issues de fabrication additive, des procédés combinés ou hybridés pour y répondre

(Cetim

Stéphane GUERIN Pôle SPI Colmar le 1er décembre 2022

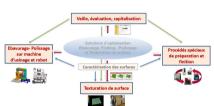
CETIM

- ► CEntre Technique des Industries Mécanique
 - Piloté par les industriels mécaniciens sous la tutelle de l'État

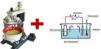
- Appuyer la mécanique et accompagner les PME
- Activité de prestations en croissance

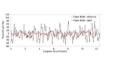
153M€
Un volume global d'activité

UNE ACTION MUTUALISÉE


UNE OFFRE COMMERCIALE

Axes de travail CETIM sur la reprise et la finition des pièces


- Projet Thématique Transversal Finition des surface
 - Structuration autour de 4 axes et activités
 - **→** Dont la finition des pièces issues de Fabrication additive métallique



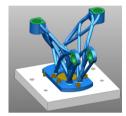
- De nombreux travaux menés sur la thématique
 - Amélioration des états de surface
 - Caractérisation et positionnement des procédés de finition
 - Impact des procédés
 - Evaluation de nombreux critères (Ra, Rz, , perte de masse, rayonnage...)
 - ➤ Amélioration de la durée de vie en fatique
 - Augmentation de l'apport de contraintes
 - ► Mise en œuvre de gammes multi étapes / multi process
 - Exploiter les avantages de chaque technologie en limitant leurs inconvénients
 - Hybridation de procédés
 - ▶ Technologie PEMEC

Sommaire

- Les besoins
- Les critères d'orientation de choix de solutions
- L'impact des procédés sur la surface
- L'amélioration des états de surface
 - Avec des solutions disponibles sur le marché et des solutions émergentes mono-procédé
 - ► Avec des gammes multi-procédés via des combinaisons
 - Avec des procédés hybridés
- Synthèse

Les besoins

- ► Fonction de surface recherchée
 - **→** Différentes selon les secteurs d'activités, les applications
 - ► Aéronautique, Spatial
 - Amélioration de la durée de vie, résistance en fatigue...
 - Médical
 - ► Réduction des frottements, résistance en fatigue...
 - Luxe
 - Amélioration de la topologie de surface, qualité visuelle, esthétique
 - Outillage
 - Amélioration de l'échange thermique, du refroidissement, de l'écoulement...
 - Mécanique
 - Résistance à la corrosion, tenue mécanique...
 - **➡** Besoin commun : l'amélioration de l'état de surface des pièces
 - → Etat de surface rugueux et hétérogène après FA
 - Différent selon le matériau, la technologie mise en œuvre, la complexité de la pièce
 - Peut impacter la contrôlabilité, les propriétés thermiques, fluidiques et mécaniques des pièces
 - **→** Impact directement la performance des produits


Les critères de choix de solutions pour améliorer la surface

- Fonction de la pièce
 - ▶ De ses différentes caractéristiques
 - Son matériau
 - Ses dimensions
 - Sa complexité (accessibilité des formes...)
 - De sa précision
 - De la technologie FA utilisée pour sa fabrication
 - De son état de surface final
 - De ses caractéristiques mécanique

 - → Orientent le choix de procédés de finition
 - ► Respecter les caractéristiques de la pièce

→ Nécessité de connaître les impacts des procédés sur les surfaces.

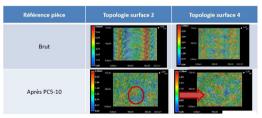
Des procédés incompatibles

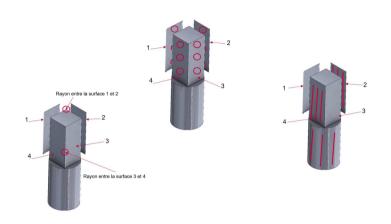
- Etudes en cours au Cetim
 - → Avec une première série de 7 procédés de finition
 - ► Force centrifuge haute vitesse
 - ► Centrifugeuse à disque
 - ▶ Vibrateur linéaire
 - ▶ Trovalisation magnétique
 - ▶ Tribosablage
 - ► Sablage pression
 - ► Electropolissage à sec Dlyte

⇒ Sur éprouvettes

- ► Issues de SLM, dans 3 matériaux
 - Aluminium, titane (TiAl6V4) et acier inoxydable (316L)
- ► Issues de MBJ, dans 2 matériaux
 - ► Aciers inoxydable 316L et 17-4PH

 $5 \, \mu m < Ra < 10 \, \mu m$


- Impact sur différents critères
 - L'état de surface : Ra, Rz, Rp, Rv
 - Les critères de portance : Rsk, Rsm
 - ► La perte de masse
 - ► Impact sur le dimensionnel
 - ► Rayonnage des arêtes vives
 - ► Topologie de surface (Sa, Sz)
 - Aspect

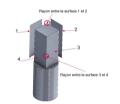


► Analyse de l'impact sur la topologie de surface

Rapidité d'exécution

Force centrifuge haute vitesse

Diminution du Ra



- ▶ Détermination du temps de cycle + analyse de l'impact géométrique
 - Le temps de cycle retenu permet l'obtention du meilleur état de surface avec le moins d'impact sur la géométrie de la pièce
 - → Mesure du rayon induit

- Courbe de l'évolution de la rugosité
 - ➡ En fonction du temps de cycle

- ➤ Courbe de l'évolution de la perte de masse
 - → Impacte sur la perte matière

- → Avec différentes technologies de grenaillage
 - Pression
 - ▶ Ultrason
 - ▶ Tribo-grenaillage

 Contraintes générées sur la surface

→ Pour l'amélioration de la tenue en fatigue ou à la corrosion sous contrainte

- **→** Sur prothèse maxillo-faciale
 - ► Titane Ta6v issu de SLM
 - ▶ Dimensions : 50*15mm ép.1mm

⇒ Rugosité initiale : Ra ≈ 10 μm

- ► Analyse surfacique de l'impact
 - Rugosités (Ra / Rz) Topologie de surface Impact sur les arêtes vives
- ► Analyse sub-surfacique de l'impact sur la métallurgie
 - Mesure de dureté, analyse de son évolution et de la nanostructure
- ► Analyse de l'impact sur la tenue en fatigue
 - → Mesure par Diffraction des Rayons X (DRX)

- **→** Premiers résultats pour le grenaillage pression
 - ▶ Mise en œuvre
 - Avec différents médias
 - Pression de 4 bar

(0.2 - 0.4 mm)

Billes inox Grenailles inox angulaires Billes céramique (0,1-0,3 mm)

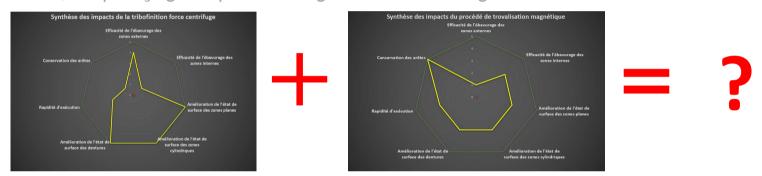
(0.25 - 0.42 mm)

- ▶ Premières analyses
 - ► Topologie de la surface, Ra, Rz...

Médias utilisés	Pression / Temps de cycle	Visuel final	Topologie de surface	Etat de surface atteint
Billes céramique (0,25 – 0,42 mm)	4,5 bar 3 minutes			Ra = 4,5 μm Rz = 18,8 μm
Billes inox (0,2 – 0,4 mm)	4 bar 1 minute	3	100 100 100 100 100 100 100 100 100 100	Ra = 3,1 μm Rz = 21,5 μm
Grenailles inox anguleuses (0,1 – 0,3 mm)	4 bar 1 minute	3	A Para San San San San San San San San San Sa	Ra = 4,8 μm Rz = 25,2 μm

- ▶ De multiples possibilités et solutions mono-procédé
 - ▶ Disponibles sur le marché
 - Tribofinition avec ses différentes variantes et cinématiques
 - Chimique
 - Electrochimique
 - Electropolissage
 - Sablage
 - Pâte abrasive
 - MMP
 - - Sablage électrolytique
 - Drylite
 - Plasma electrolytique

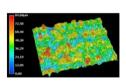
- Hirtisation



→ Avec leurs avantages et leurs limites

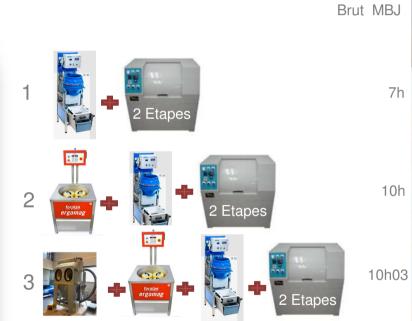
- ► Intérêts de travailler sur des gammes multi étapes / multi process
 - ► Choix, séquençage et paramétrages des technologies

- ⇒ Exploiter les avantages de chaque technologie en limitant leurs inconvénients Avec la possibilité de réduire les temps de cycle
- ▶ De multiples combinaisons de procédés possibles
 - ► Sablage + Tribofinition FCHV
 - Chimique + Electrochimique
 - ► Tonnelage + Tribofinition FCHV
 - Trovalisation magnétique + Fond tournant + Tribofinition FCHV
 - ...
- **→** Fonction des objectifs recherchés



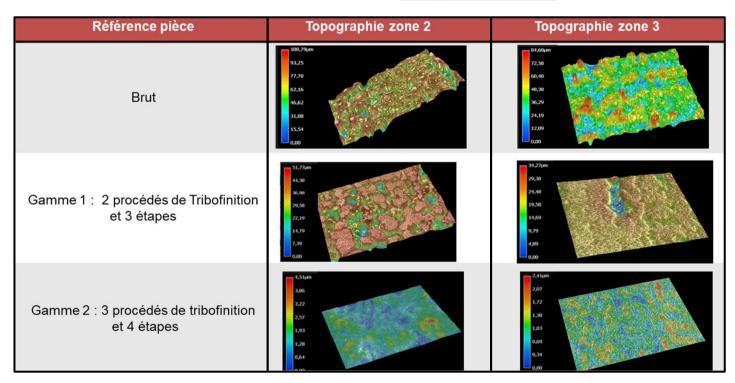
- Exemple de gammes multi-procédés
 - → Recherche d'une qualité de surface polie pour une pièce issue d'impression 3D Métal Binder Jetting

- ▶ Caractéristiques de la pièce
 - Acier inoxydable type 316L
 - ▶ Dimensions de 10*10*65mm
 - Rugosité initiale
 Sa entre 8 et 10 μm
 Sz entre 80 et 110 μm



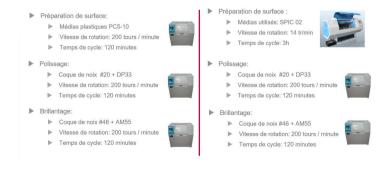
- ▶ Mise en œuvre
 - ► Choix, séquençage et paramétrages des technologies
 - Gamme N°1 : préparation tribo. fond tournant, polissage et brillantage force centrifuge
 - ▶ Gamme N°2 : préparation tribo .magnétique, tribo. Fond tournant, polissage et brillantage force centrifuge
 - ► Gamme N°3 : préparation sablage pression, tribo .magnétique, tribo. Fond tournant, polissage et brillantage force centrifuge

Résultats

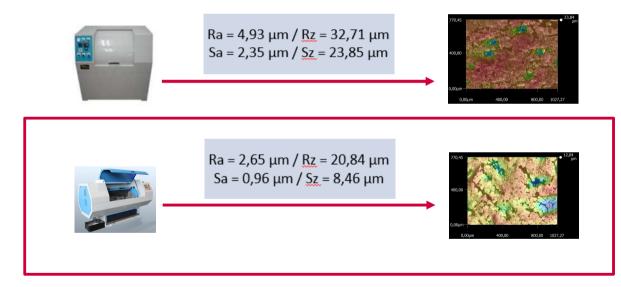


Ra: 0,27 $\mu m \pm 0,05 \mu m$ Rz: 1,80 $\mu m \pm 0,41 \mu m$

► Photos et analyse des pièces


- ► Intérêts des couplages
 - ► Pour les technologies de sablage pression + tribofinition magnétique + tribofinition centrifuge (fond tournant et/ou centrifuge haute vitesse)
 - Amélioration notable de l'état de surface des zones accessibles (Ra autour de 0,3 μm au lieu de Ra 0,6 μm avec l'utilisation de la tribofinition seule)
 - Homogénéisation de la surface dans les zones difficiles d'accès (Ra autour de 0,3 μm contre Ra 1,8 à 6 μm en tribofinition seule)
 - ► Un avantage particulier de la tribofinition magnétique et du sablage pression
 - Réduction du nombre et de la taille des porosités en extrême surface
 - **→** Amélioration efficace de l'aspect de surface

- → Recherche d'une gamme pour remplacer l'étape de préparation par voie humide par un procédé voie sèche pour une pièce issue de MBJ
 - ► Caractéristiques de la pièce
 - ► Acier inoxydable 316L
 - ▶ Dimensions 50*25*2mm
 - Rugosité initiale
 Sa entre 8 et 10 μm
 Sz entre 80 et 110 μm



- ▶ Mise en œuvre
 - Choix, séquençage et paramétrages des technologies
 - Comparaison de deux gammes

- Résultats
 - Etape de préparation
 - Comparaison tribofinition FCHV voie humide et tonnelage voie sèche

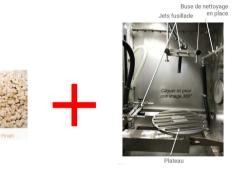


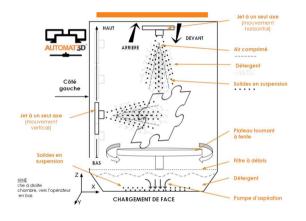
- ► Intérêts des technologies hybridées
 - ► Effets combinés et synergie des procédés

1+1

= 3

- → Pour bénéficier des effets démultipliés des procédés combinés
- ▶ Des exemples d'hybridation
 - ► Sablage et Tribofinition → Solution de Tribosablage Rollwasch
 - Sablage et chimie Solution DECI duo Post Process
 - ► Electrochimie et tribofinition → Solution PEMEC Cetim ENISE

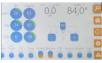




→ Pour la réduction du temps de traitement et l'amélioration des surfaces

- **→** La solution DECI Duo Postprocess
 - ▶ Projection sur la pièce de 2 flux de jet perpendiculaires comprenant de l'air comprimé, des détergents et des solides en suspension

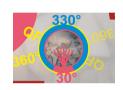
- ► Pilotage avec un algorithme propriétaire d'agitation AUTOMAT3D
 - Agitation
 - ▶ Température
 - ▶ Temps process



- **→** Application a un secteur de turbine
 - Caractéristiques de la pièce
 - ▶ Matière : Inconel 718 issue de SLM
 - ▶ Dimensions : 100*50*20mm
 - Rugosité (après fusion SLM) : entre 6 et 15μmRa
 - ▶ Mise en œuvre
 - ➤ Sur machine Hybrid DECI Duo (cuve de 95I)
 - ▶ Médias : ZB-CBM
 - Détergent PG5
 - ► Paramètres principaux
 - Pression: 6,5 bar
 - Température : 37°c

- ► Temps de 50 min
- Rugosité de 0,97 à 1,19 μmRa

Avant



- **→** La solution Tribosablage Rollwasch
 - ▶ Projection de médias (type corindon) par sablage dans un vibrateur circulaire sur une zone de 30° et tribofinition avec média plastique (pré imprégné du média de sablage) sur les 330° restants

- ➤ Vibrateur circulaire d'une capacité de 50 à 520 I
- ► 1 à 2 buses de sablage, en périphérie ou en frontal
 («action plus douce» en périphérie et «plus agressif» en frontal)

Large gamme de médias (corindons...) pour le sablage

- **→** Application a un support de vérin
 - ► Caractéristiques de la pièce
 - ► Matière : As7G06
 - ► Dimensions: 60*60*70mm
 - Rugosité (après fusion SLM) : entre 15 et 20μmRa

- ► Sur machine SMR-D-50-GM (cuve de 50 l)
 - ► Média de sablage : CRND 60B
 - ► Pression de sablage : 4 bar
 - ► Média de tribofinition : QF20 NL5

- Temps de 1h
- ► Rugosité de 4 à 5µmRa

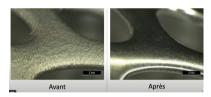
https://www.youtube.com/watch?v=4ijl20FE-PE

L'amélioration des états de surface

→ Le développement de la solution PEMEC

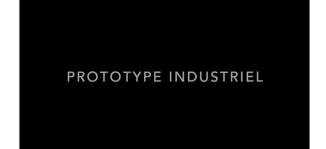
Polissage Electro-Mécano-Chimique PEMEC

- ▶ Polarisation d'une pièce positivement (anode) et d'une surface de référence négativement (cathode) au sein d'un électrolyte
- Mise en mouvement de particules abrasives afin de mener conjointement l'action mécanique et l'action chimique
- → 2019 Dépôt de brevet CETIM ENISE



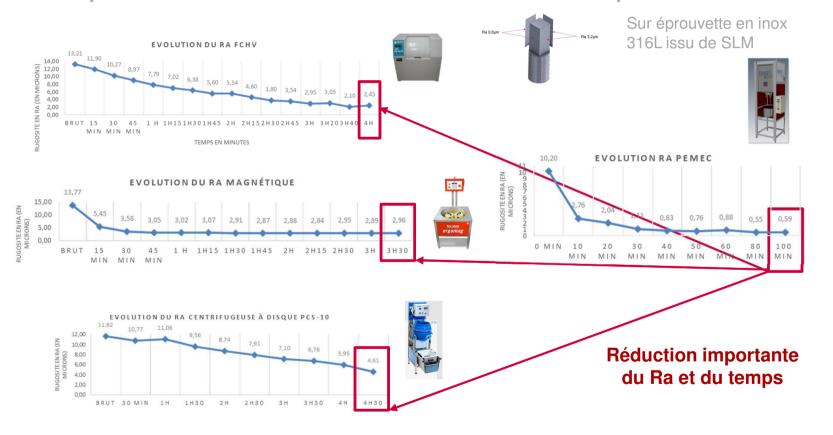
→ 2020 Développement d'une cellule prototype Pièce en Inox 316L issue de SLM

Passage d'un état de surface de **Ra 6μm à 0,3μm** Rz de 38μm à 3,5μm En **30 min**



- **→** Application à une pièce d'ornement
 - ► Caractéristiques de la pièce
 - Matière : acier inox 316L issu de SLM
 - ▶ Dimensions: 85*35mm
 - Rugosité : autour de 10μmRa et Rz autour de 65μm

► Sur la cellule prototype PEMEC



→ Comparaison de l'évolution du Ra PEMEC avec 3 autres procédés

- → Potentiels de la technologie pour la finition des pièces issues de FA
 - ▶ 1 seule étape de finition nécessaire
 - Atteinte d'une rugosité homogène et autour de Ra 0,3μm
 - ► Abaissement de la rugosité d'un facteur 10 à 15 en une 30^{aine} de min
 - Actions ciblées sur l'ensemble des échelles de rugosité
 - Permet de limiter l'impact dimensionnel de l'opération de finition sur les pièces

Synthèse

Pour l'amélioration de l'état de surface des pièces de Fabrication Additive Métallique

- → Des procédés industriels et disponibles
 Emergence de nouvelles solutions sur le marché pour répondre au besoin
 - → Qualité finale et temps fortement dépendant de la rugosité de départ et de la qualité de la structure métallurgique

Pour le choix de solutions

Nécessité de connaître les impacts des procédés sur les surfaces et le positionnement des procédés (domaine le plus pertinent)

Pour tirer le plein potentiel et bénéficier de la synergie des procédés

- Réalisation de gammes multi-étapes, multi-process Utilisation de procédés hybridés
- → Pour des performances accrues en terme de qualité de surface, de résistance mécanique, de productivité et de coût de la pièce

Equipements Cetim pour l'ébavurage, la finition et le polissage

- **→** Moyens, machines
 - Cellule à St-Etienne
 - ► 1 CU 5 axes 18000 tr/min C250U (Hermle)
 - ▶ 1 Dry electro polishing DryLyte 100Ti (GPA Innova)
 - ► 1 Centrifugeuse satellitaire Haute Vitesse (Rifatec)
 - 2 Centrifugeuse à fond tournant (voie sèche-voie humide) (Avatec)
 - ► Trovalisation magnétique (ABC Swisstech et Forplan)
 - ➤ Tribo-sablage (Rollwasch)
 - ► Sableuse par pot de pression RDISC800 (Rifatec)
 - ▶ 1 Vibrateur linéaire R360/810 TE 30 (Rösler)

- Prestations
 - Détection et évaluation des potentialités des différentes technologies et leur combinaison
 - Etude de faisabilité
 - Transfert industriel
- Possibilité de réaliser des préséries

Merci pour votre Attention

(Cetim

Stéphane GUERIN Tél: 06 74 40 12 03

Mail: stephane.guerin@cetim.fr