Metallurgy of ALM Nickel-based alloys: Which TTT diagrams?

30-11-2022

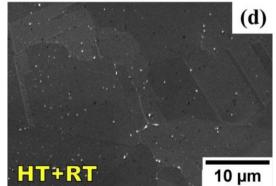
Agenda

02 | Case Study : Hastelloy® X

03
|
Conclusions and Outlook

SAMC, a key player for decarbonization in aeronautics Key milestones THE DEVELOPMENT CENTER July 21: official receipt of the THE PRODUCTION CENTER 40 design/production building and start of industrial ■ 12 500 m² to closely connect engineering staff specialized in AM means qualification 75 operators and technicians qualified in AM Calculation and simulation September: first parts AM design, research 30 printers and heat treatment, resources manufactured chemical and finishing resources Q1 22: AS/EN 9100 certification and production Q2 22: first serial production THE R&T CENTER 40 engineers and PhDs in materials and processes Laboratory equiped to the highest possible level: geometric, metallurgical powder categorization, surface condition, etc... An innovation workshop to prepare future medium-volume production THE TRAINING CENTER An in-place training center, underpinning the goal of sharing and improving skills on an ongoing basis Factory built 1st serial parts deliveries **Factory Campus Project** R&D lab and equipement ready available Launch launch 13/01/20 July 22 July/21

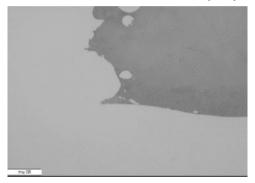
Case Study: Hastelloy® X

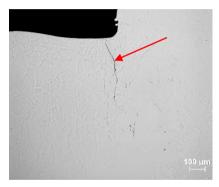

Case Study: Hastelloy® X - context

Chemical composition (wt%): Nickel Base superalloy

	Ni	Fe	Cr	Мо	W	C	Co	Mn	Si
Min	Bal.	17,0	20,5	8,0	0,2		0,5		
Max		20,0	23,0	10,0	1,0	0,1	2,5	1,0	1,0

- Hastelloy® X microstructure:
 - Solution hardening + carbides
 - No gamma prime

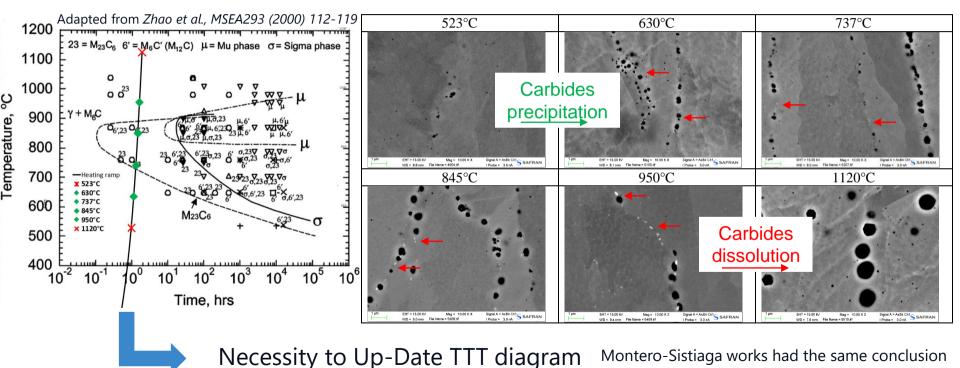

Annealing: 1177°C for 2h under Ar + air cooled



Case Study: Hastelloy® X - context

Before Heat Treatment (HT)

After Heat Treatment


Building direction

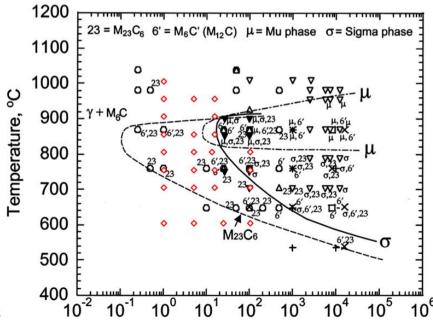
- Voids appear:
 - ❖Well aligned
 - No clear link with microstructure (i.e. not at grain boundaries)
 - Some voids are connected (red arrow)

Case Study: Hastelloy® X - first trial

HT interrupted: heating ramp 10°C/min + water quench

SAMC / 30-11-2022 / A3TS Journées Traitements et parachèvements de pièces issues de fabrication additive

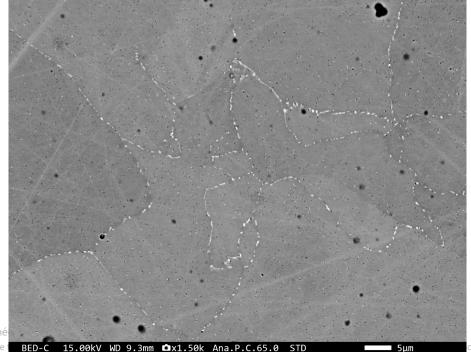
Montero-Sistiaga works had the same conclusion Montero-Sistiaga et al. Additive Manufacturing 31 (2020)


Case Study: Hastelloy® X - experimental procedure

- ❖ Small samples electro-machined in an as built bar, ~2x2x2mm to avoid thermal inertia
- ❖ Hot furnace stabilized, at least, 1h before sample introduction
 - Thermocouple in the furnace close to the crucible
 - Furnace stabilized in less than 5min after introduction
- Water quench in large water volume at room temperature
- Time-Temperature conditions:
 - Between 1 to 100h (need to fit in 6 month internship)
 - ❖ Between 600 to 1000°C based on literature data (mainly, Zhao et al., MSEA293 (2000) 112-119)
- SEM-EDS observation:
 - ❖ Sample are embedded + polished until 1µm
 - Carbon coating
 - ❖ EDS: 5kv / WD ~10mm

Case Study: Hastelloy® X - experimental procedure

- Time-Temperature conditions:
 - Between 1 to 100h (need to fit in 6 month internship)
 - Between 600 to 1000°C based on literature data (mainly, Zhao et al., MSEA293 (2000) 112-119)

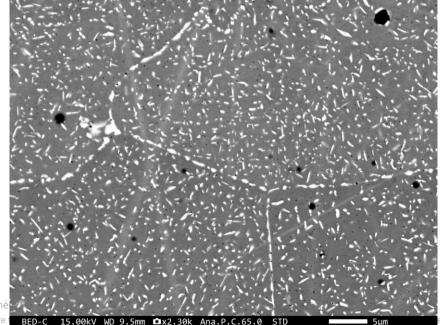


Time, hrs

Adapted from Zhao et al., MSEA293 (2000) 112-119

SAFRAN

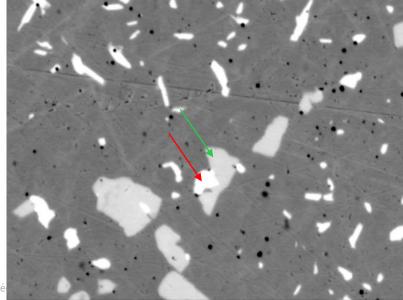
- 3 different phases identified:
 - First precipitation at grain boundaries



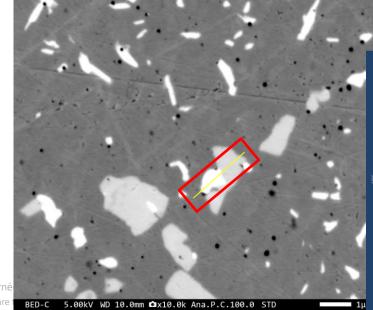
800°C/1h

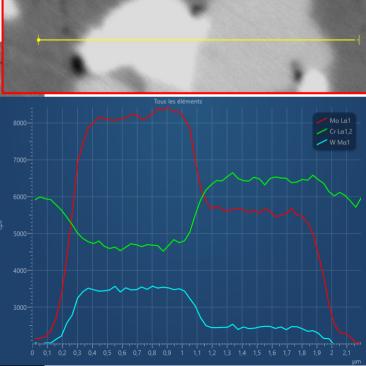
- 3 different phases identified:
 - First precipitation at grain boundaries
 - Second phase inside of the grain with needle-shape

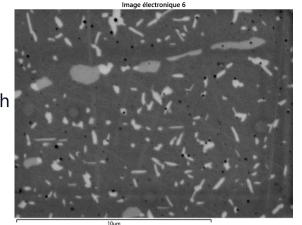
Same chemical composition

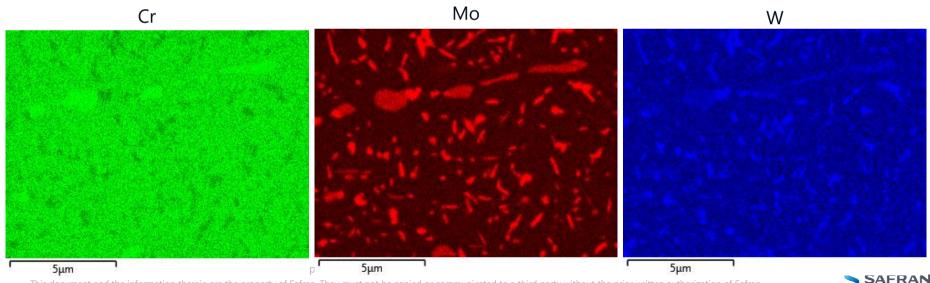


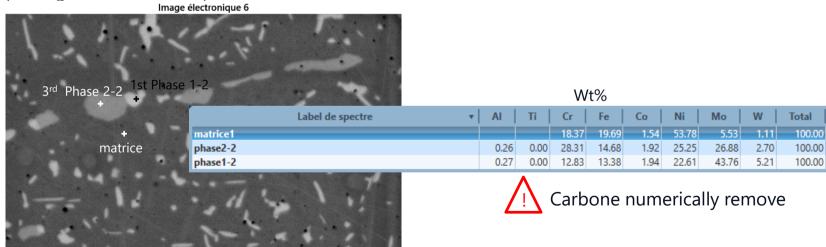
FOV:55.7x41.7μm


800°C / 13h

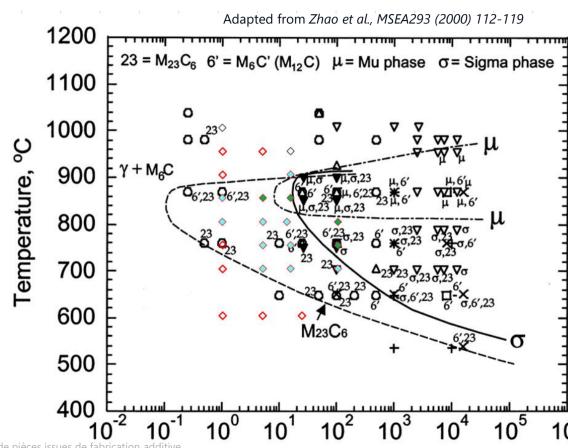

- 3 different phases identified:
 - First precipitation at grain boundaries
 - Second phase inside of the grain with needle-shape
 - Last phase growth on the first phase under some conditions




- 3 different phases identified:
 - First precipitation at grain boundaries
 - Second phase inside of the grain with needle-shape
 - Last phase growth on the first phase under some conditions

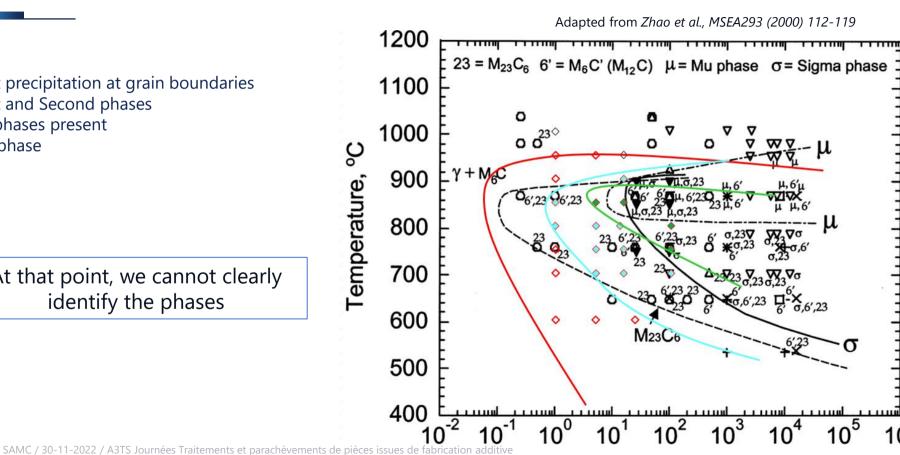


- 3 different phases identified:
 - First precipitation at grain boundaries
 - Second phase inside of the grain with needle-shape
 - Last phase growth on the first phase under some conditions



- 3 different phases identified:
 - First precipitation at grain boundaries
 - Second phase inside of the grain with needle-shape
 - Last phase growth on the first phase under some conditions

- ♦ First precipitation at grain boundaries
- ♦ First and Second phases
- All phases present
- ♦ No phase


Time, hrs

6 | SAMC / 30-11-2022 / A3TS Journées Traitements et parachèvements de pièces issues de fabrication additive

This document and the information therein are the property of Safran. They must not be co

- ♦ First precipitation at grain boundaries
- First and Second phases
- All phases present
- ♦ No phase

At that point, we cannot clearly identify the phases

This document and the information therein are the property of Safran. They must not be co

Time, hrs

Conclusions and outlook

Conclusions and Outlook

- ❖ Hastelloy[®] X:
 - Need a careful identification of the phases:
 - EDS/EBSD, on-going
 - X-ray diffraction or TEM to be done if needed
 - Some point can be done after annealing treatment also
- Need to be extend to other alloys, e.g. Inconel® 718
- Comparison and calibration with numerical tools (e.g. Thermo-calc/DICTRA), on-going

POWERED BY TRUST

